Data Processing and Interoperability Services in DataPorts

Achilleas Marinakis ICCS / NTUA

DataPorts Architecture

Semantic Interoperability

Scope

 To define an unambiguous way to interpret the data that are being exchanged between computer systems

Goal

 To simplify the reuse of data by other applications and components, within the smart ports domain

Challenge

- Enabling interoperability not a trivial task, because different organizations in transportation and logistics do not follow a common standard
 - They have their own vocabularies, with poor definition of semantics, or no explicit semantic formulation at all

Data Modeling

Goal

 To describe ports data in a systematic and standardized way, with mappings to standard vocabularies in order to facilitate interoperability with other systems

Process

- Identify and analyze the different data sources to be integrated in the DataPorts platform, considering the meaning and format of the data
- Review of existing ontologies and vocabularies in the application domain for potential reusability

Tangible Outcome

DataPorts Common Data Model

DataPorts Common Data Model (1/2)

- Based on Fiware Smart Data Models guidelines
- Also fully compatible with other standards and initiatives
 - e.g. the Context Information Management API standard (NGSI-LD), set by the European Telecommunications Standards Institute (ETSI)
- The SmartPorts domain includes many subjects, each one contains different entity types
 - e.g. SeaTransport subject provides access to Vessel, CruiseShip, LocalShip entities

DataPorts Common Data Model (2/2)

Data Access Component

Scope

To connect heterogeneous (in terms of interfaces, formats and models) data sources to the DataPorts platform

Goal

To develop a scalable software component that obtains data from a source, translates them into the DataPorts Common Data Model and make them available to the processing layer via a unified API

Tangible Outcome

Dockerized agents to access Data Sources, through a GUI and SDK management framework

Data Abstraction and Virtualization

- Scope
 - To offer the translated and harmonized Data as a Service, putting emphasis on QoD and QoS
- Goal
 - To provide an abstraction layer between data providers and consumers
 - Let the application developers just define the content and the format of the needed data
 - Rely on the proposed middleware to deliver those data, encapsulating all the underlying technical complexity

Data Processing and Storage

Pre-Processing and Filtering Software

- Responsible for the initial pre-processing, cleaning and filtering of the incoming data
- To improve the quality of the data and thus to increase the performance of the applications built on top of them

Virtual Data Repository

- Distributed infrastructure to store the pre-processed, cleaned, and filtered data
 - Data Lake
- Capable of upscaling or downscaling in a fully automated way according to the workload
 - Resource optimization
 - Low response times
 - High availability

Virtual Data Container - Overview

- The interface between the middleware and the data consumers (analytics)
- Further process, filter and then serve the needed information as data ponds, by applying specific filtering rules to the data
- Transforms the data to the requested format (JSON, Parquet or CSV)

Virtual Data Container - Filtering Rules

Goal

- To enable the consumers retrieve only the portion of data they are interested in, thus minimizing the processing and the network workload
- To detect and remove wrong values, most probably caused by sensors malfunction (e.g. temperature at minus 50 degrees Celsius)

Structure

- Array of JSON Objects
- Follow the subject operator object syntax (e.g. vessel_arrival_time >= 2022-11-29T08:00:00.000+00:00)
- Kept simple so that the rules can be specified not only by data scientists and experts, but also by users with limited or no technical background within a port ecosystem

Tangible Outcome

- A common access layer, where the data consumers simply define queries (in the form of rules) in a unified format
- VDC designer is responsible for developing the suitable module to execute those queries, according to the selected storage technology (MongoDB in the case of DataPorts)

Thank you for your Attention

Achilleas Marinakis Research Engineer ICCS / NTUA achmarin@mail.ntua.gr