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* MonB5G architecture

* Main energy management and orchestration architectural building blocks
* MonB5G reference architecture for energy management

* Main energy-efficient algorithmic innovations of MonB5G

* Conclusions

* MonB5G Proof-of-Concepts
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High level Architecture Concept
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MonB5G framework has been designed for Al-driven management and orchestration of massive number of NSls
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Building blocks of the Architecture
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Closed control loop with security and energy management Al-driven mechanisms

MS: Monitoring System
C N

MS

A )

v’ Distributed
Monitoring

v' Graph-based
representation

v" Low monitoring
load

AE: Analytics Engine

-

-

AE

\

v’ Distributed ML
(Federated Learning)

v Slice-level KPI

prediction

v' Auto-encoder
compress layer
management

DE: Decision Engine

v' Distributed Reinforcement
Learning for slice
orchestration

v' Data-driven inter-slice
management

v" Energy-driven reward
functions for DRL-based DE
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' VNF/PNF (1,n)  VNF/PNF (Kn)  VNF (1,n) VNF (L,n) VNF (1,n) VNF (M,n)

MS, AE, and DE instances at

* Virtual network function (VNF)/physical network function (PNF) level

e Slice-level

* Domain-level (RAN, edge, cloud)

* IDMO -Inter-domain manager and orchestrator (IDMO) level, which, like Network Slice
Management Function (NSMF), manages the life cycle of E2E network slices by making global
E2E analyses or decisions at both the cross-slice and cross-domain levels
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Infrastructure 0SS/BSS
MonB5G Portal (FCAPS) unspec.

Energy Consumption

| Agent
pi Iy
Infrastructure Operator P
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Support
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S00-1 DMO
Infrastructure Domain Manager (IDM)
\\””5/" ly Domain specific DMO(s) management and orchestration
— IOMFs Infrastructure orchestrated management functions
( iz m can optimize infrastructure utilization efficiency and

l
1\ infrastructure Provider1

achieve effective infrastructure management

The framework is aware of the energy costs associated

with infrastructure resources
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Minimization of the MS Measurement Load

by Adding an Internal Memory like a time-series
database (TSDB). This memory block enables
avoidance of implementing energy-demanding
synchronization among the MS, DE, and AE

Energy efficiency at RAN and Edge

Energy-efficient Statistical FL-based
decentralized AEs

Stochastic FL-based policy for scalable AE

AE constrained federated learning is considered
to reduce the amount of raw data exchanged
between local AEs and the end-to-end AE

Decentralized Cross-Domain Energy Efficient DE

DEs use Decentralized Deep Reinforcement
Learning strategies (Multi-Agent DRL, Federated
DRL) to perform cross-domain energy-aware
VNF and SFC placement in 5G service-
customized network slices

DEs choose the ideal compromise solution to
achieve a balance between energy efficiency
and SLAs

Distributed Al enables the local processing
of management information, consequently
decreasing the exchange of management

Information between entities
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To address the FL resource provisioning task at the
local analytic engines (AE), we define the related
SLA-constrained optimization problem within a
proxy-Lagrangian framework and solve it with a
non-zero sum two-player game strategy

An innovative SLA-driven stochastic FL policy is
designed to ensure scalability under massive slicing

Implement the proposed solution in a cloud-native
containerized environment
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To demonstrate the general framework of Statistical FL, three main slices are considered:
* eMBB: NetFlix, Youtube and Facebook Video,

* Social Media: Facebook, Facebook Messages, Whatsapp and Instagram,

* Browsing: Apple, HTTP and QUIC

SLA: any assigned resource to the tenant should not exceed a range with a probability higher
than an agreed threshold

This translates into learning the CPU resource allocation model under empirical cumulative
density function (CDF) constraints

The proposed Statistical FL enables controlling of the long-term statistical behaviour of the SLA
compared to FedAvg baseline
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M@BSG Statistical Federated Learning Results

Dramatic overhead reduction at convergence

Empirical CDF
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Table I: Overhead and energy comparison

Rounds 50 60 70 80
Overhead CCL (KB) 18750
Overhead StFL (KB) 1055 1266 1477 1688
Energy CCL (mJ) 118.3
Energy StFL (mJ) 6.7 8 9.3 10.7T
Energy Gain x17.8 x14.8 x12.7 x11.1

Browsing
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SLA violation rate of
each all AEs
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In each FL round, only a subset of active AEs can be chosen

We suggest a stochastic AE selection policy driven by SLA, with the aim to

v reduce the network data overhead
v optimize the FL computation time
v increase the system's energy efficiency

AEs with a low SLA violation have a higher probability to participate in the FL round

(softmin function)

! Selected AES based on AR® i AR
1 Probabilty Distribution —y n bt
' minyeoesTin | AErny...;AEgn} FL training
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M@BB@ Scalable, Energy-Aware, Multidomain Orchestration for Beyond-
5G URLLC Services ( SCHEMA)

Problem:

e Zero-touch Service Function Chain (SFC) orchestration
for multi-domain networks, targeting the latency
reduction of URLLC services while improving energy
efficiency for Beyond-5G networks.

Solution:

* DEs use Decentralized Deep Reinforcement Learning
strategies to perform cross-domain energy-aware VNF
and SFC placement in 5G service-customized network
slices.

* We split the network in an inter-domain level graph

and multiple intra-domain level graphs.

—
=1 Server
=4

D User

@] Gateway

B srcwr

m==  SFC Link

wee  Link

Can be deployed
anywhere anytime




M@BSG‘ Scalable, Energy-Aware, Multidomain Orchestration for Beyond-

5G URLLC Services (SCHE2MA)

Key SCHE2MA algorithm steps:

1. For every VNF in the network, we perform an auction,
letting multiple local domain RL agents bid to receive a
specific VNF

2. Local RL agents perform intra-domain orchestration to
avoid global network slice reconfiguration

Auction mechanism steps:
1. Auction Initiation

2. Distributed Operation

3. Global Operation

4. Orchestration

5. lteration

VNF 1 VNF 2

SFC 1

Domain1

Domin 2

F Migratic

Winner <"~

----- + Loser
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M@@S@ Scalable, Energy-Aware, Multidomain Orchestration for Beyond-

5G URLLC Services (SCHE2MA)

Baseline Scenarios:

Two reference cases from the literature are used to evaluate the
proposed SCHE2MA solution

1. Centralized RL
The central orchestration algorithm where in every VNF in the
network we perform an auction, letting multiple local domain RL
agents bid to receive a specific VNF.

2. Static Placement

In this strategy the VNF placement is static and the VNFs remain
hosted in the initial node throughout the experiment.

Results:

e The performance of SCHE2MA outperforms the two baselines
SCHE2MA demonstrates a clear indication of its ability to conceive
better VNF placements that satisfy the latency and energy
consumption trade-off.

* This behavior is a result of SCHE2ZMA's ability to cluster VNFs within
servers, minimizing the number of transmissions in physical media
therefore decreasing costly communication between servers.

Average Energy Consumption (%%, mJ)
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= Distributed management and components with embedded intelligence reduce the amount of the
information exchanged for management purposes, the management system response time and the energy

cost.

= |OMF functions can improve the effectiveness of infrastructure utilization and contribute to the overall
quality of infrastructure management and, as a result, to achieve energy saving goals.

= Scalable cloud-native SLA-driven stochastic FL policy for zero-touch network slicing resource allocation reduces
the corresponding computation cost and SLA violation.

= Statistical federated learning (StFL)-based Analytical engine for slice-level KPI prediction achieves greater
than an x10 improvement in energy efficiency over its centralized SLA-constrained deep learning equivalent
while obtaining an x20 reduction in SLA violations relative to the FedAvg.

= SCHEMA, a Distributed Reinforcement Learning (RL) algorithm through model validation and simulation
demonstrated its ability to jointly reduce average service latency and energy consumption compared to a
Centralized RL solution and Static Placement.
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