Building a Fully Connected, Intelligent World

Next-Generation Data Center: Sustainable, Simplified, Autonomous Driving, Reliable

Theodoros Theodoris

Executive Director Digital Power – Data Center Facilities CEE & Nordic Region

Huawei: Leading provider of ICT infrastructure and smart devices

196.000

Employees

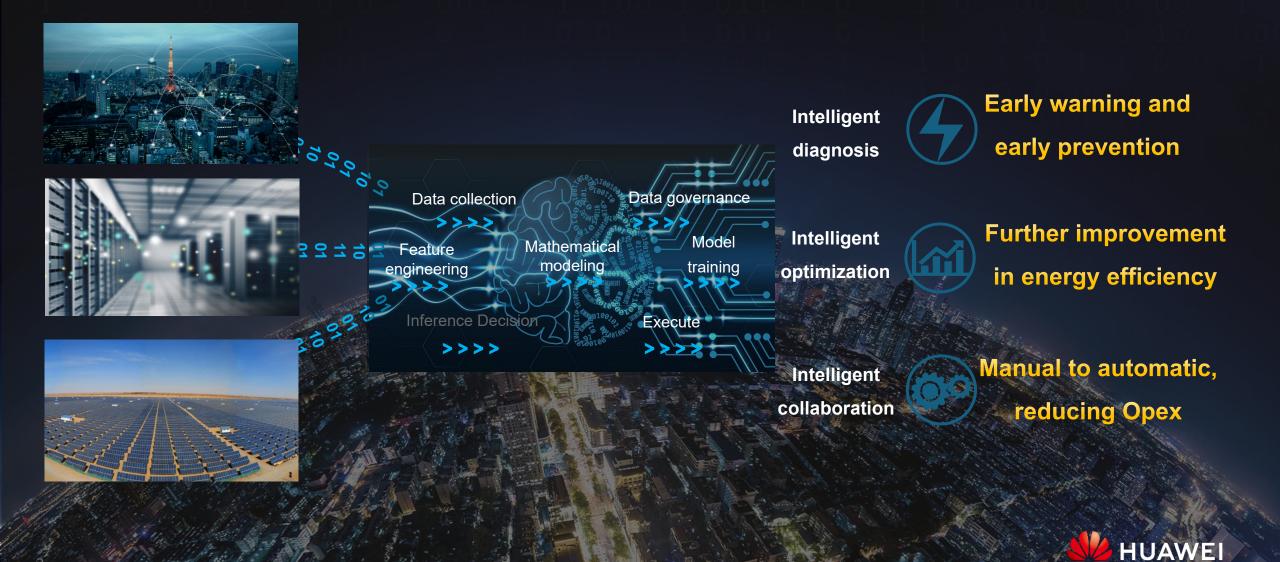
fully connected, intelligent world

107.000+

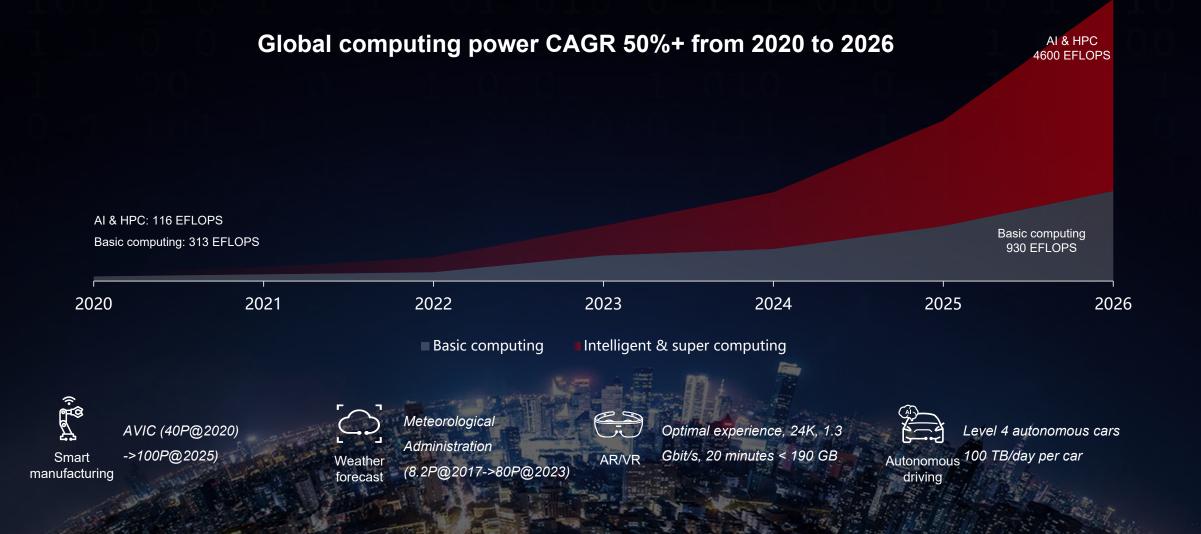
R&D employees Countries and regions

170+

Bring digital to every person, home and organization for a


44+

Interbrand's Top 100 Best Global Brands



2

Explosive Growth of Data and Computing Power in the Intelligent Era Drives the High-Density and Large-Scale Development of Data Centers

Explosive Growth of Data and Computing Power in the Intelligent Era Drives the High-Density and Large-Scale Development of Data Centers

Data Centers in the Low-Carbon Era Should Prioritize Efficient Use and Recycling of Various Resources

70 million kWh of electricity

890,000 tons of water

Rack utilization rate 50%

42,000 tons of carbon emissions*

8,000 tons of residual heat

Material recovery rate 15%

Model: 12 MW data center, 1500 racks x 8 kW, 2N architecture, load rate 50%, PUE 1.3 * Carbon emissions in scope 2, excluding scopes 1 and 3

What Kind of Data Centers Will be Needed by 2030?

Interaction of energy Sustainable

All Green

All Efficient

All Recyclable

Composition of matter Simplified

Simplified Architecture Simplified Power supply Simplified Cooling Usage of information Autonomous driving

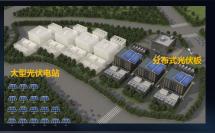
O&M Automation

Automatic Energy Efficiency Optimization

Operation Autonomy

Reliable

Proactive Security Secure Architecture


Top trends of data center energy@2025

Trend 1 Zero carbon DC

Carbon neutrality triggers a green revolution, Data Center PUE Enters the 1.0x Era and "Zero Carbon" DCs Will Realize

Green
PowerGreen power, such as wind energy and solar energy,
will be more widely used in data centers.

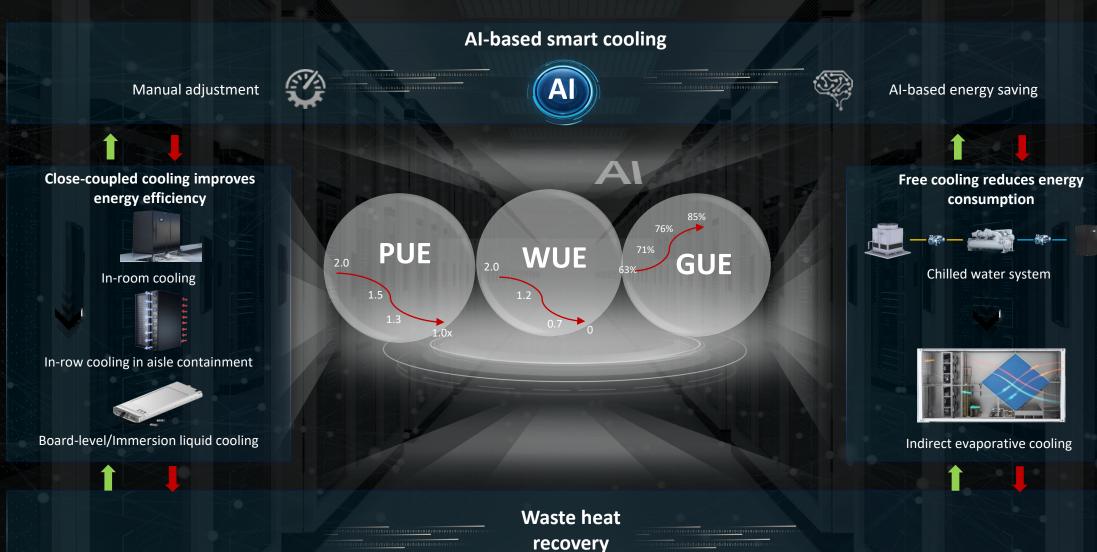
The PUE requirement is more strict, 1.4 -> 1.3 -> 1.2.
 With the continuous evolution of cooling technologies

Power saving

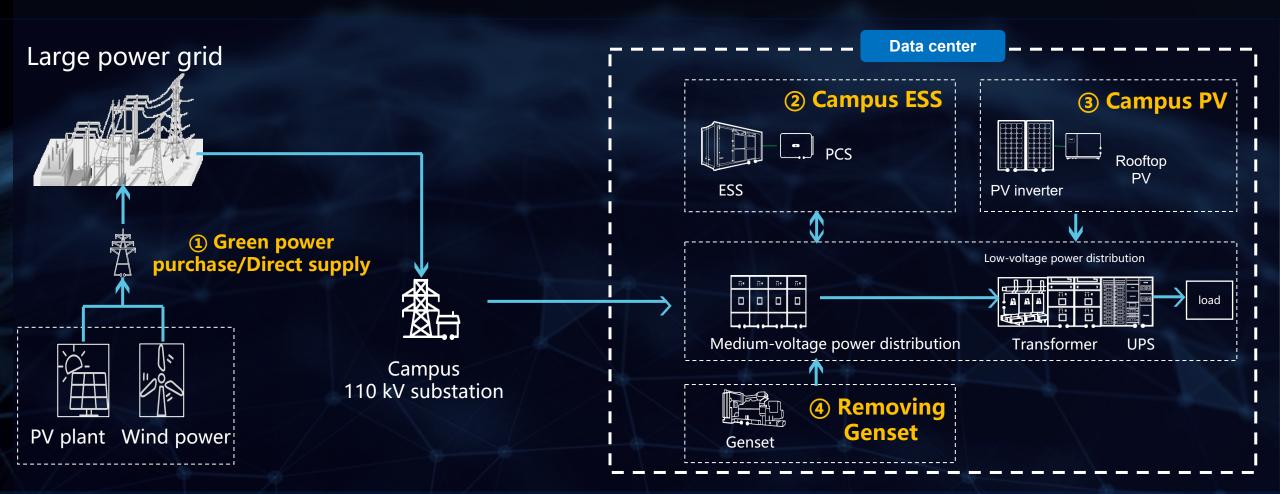
water saving

- With the continuous evolution of cooling technologies, CLF enters the 0.1 era.
- WUE Becomes a Green Data Center Evaluation Indicator

Thermal
Energy
RecoveryIn large-scale data center campuses, heat recycling,
as a new energy-saving solution, has started to be
implemented in large-scale data center campuses.


Sustainable – All Efficient: PUE \rightarrow xUE, One Dimension \rightarrow Multi-Dimensional System

Evaluation indicator: $PUE \rightarrow xUE$



 $CUE: Carbon \ Usage \ Effectiveness$ $PUE: \ Power \ Usage \ Effectiveness$ $WUE: \ Water \ Usage \ Effectiveness$ $GUE: \ Grid \ Usage \ Effectiveness$ $GUE: \ Grid \ Usage \ Effectiveness$ $\alpha \ / \ \beta \ / \ \gamma \ / \ \delta \ are \ used \ to \ balance \ the \ importance \ of \ each \ indicator. \ The \ values$ $vary \ with \ \underline{regions/industries}.$

Cooling & Heat Recovery for an Optimal xUE

Clean Power Supply: Increasing the Percentage of Clean Energy in DC

① Green power purchase/Direct supply

People made great efforts to develop clean sources such as photovoltaic and wind energy

② Campus ESS

Flatten the peak and valley electricity prices of the grid.

③Campus PV

Making full use of resources such as the roof of the data center campus

(4) Removing Genset

Hydrogen application instead of gensets

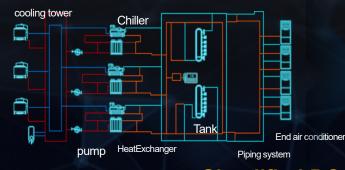
100% Clean Energy Data Center in MEA

Full Prefabricated Modular Data Center For Moro MBR Solar Park

5.5 days installed **49** DC modules

6 months

rollout **1.8MW**, **2,000m**² DC


100% clean energy driving

Convergence and simplified Power Supply System

Power module

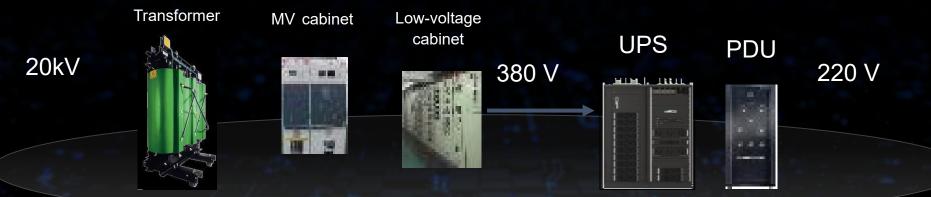
Convergence and simplified cooling system

Indirect evaporative cooling

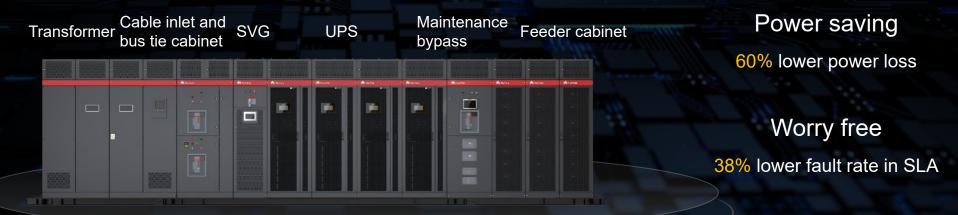
Simplified DC prefabrication

Prefabricated data center

- Prefabrication delivery: TTM from 20 months to 9 months for 1000 cabinets
- Full modular design: on-demand deployment, phased investment, and low initial investment
- Elastic architecture: supporting IT evolution


Trend 2 Simple Architecture

Converged, prefabricated, system-level, and DC-level simplified architectures will become mainstream applications.


Simplified – Simplified Power Supply: Redefined Components and Links

Component integration

Footprint saving 40% smaller footprint

Time saving 2 months \rightarrow 2 weeks delivery

Physical connections → Converged power supply

Simplified – Simplified Cooling: Interaction Between Cooling and Heat

Indirect Evaporative Cooling

Simplified cooling link

Maximized use of free cooling sources and one heat exchange

Working Mode

Ambient T°C	Mode	Fans	Pumps	DX
Dry bulb≤16°C	Dry Mode	ON	OFF	OFF
Dry bulb > 16°C and wet bulb≤19°C	Spray Mode	ON	ON	OFF
Wet bulb>19°C	Hybrid Mode	ON	ON	ON

Simplified – Simplified Architecture: Innovative Buildings and Equipment Rooms

Prefabricated buildings

Breaking a whole into parts: parallel works thanks to product design of engineering

Modular equipment room

Integrating parts as a whole: all in one instead of combination

Low-carbon Construction: Innovative Construction, Prefabrication + Modularization, High Recovery

- 80% recovery rate, reducing carbon emissions by 8,000+t
 Fewer "three wastes", 62 tons of construction waste, 80% reduction
- The data center TTM is **shortened by 50%** (from June to September 2018).
- One DC at one layer, **continuous evolution** of modular design
- Low air leakage rate (10% to 3% to 5%) and low cooling loss

* 1500 cabinets, 8 kW/cabinet, 2N, 40-year lifecycle

Next Generation Indoor Solutions

FusionModule500

FusionModule800

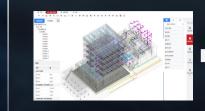
FusionModule2000

1

"Insanity is doing the same thing over and over again and expecting a different result."

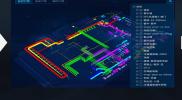
Traditional Approach

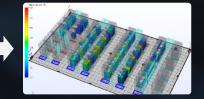
Next Generation FusionModule800


Top trends of data center energy@2025

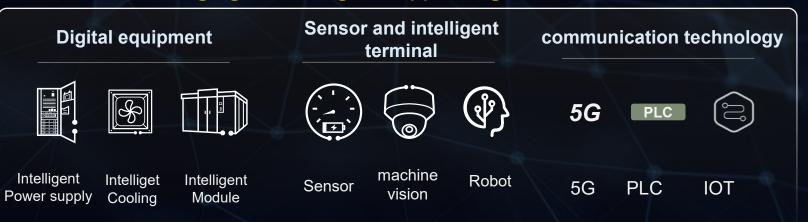
Trend 3 Fully digitalized

Digital technologies are more and more widely used in data centers,All-DC visualization, manageable, and controllable


Digitalization of data centers throughout the lifecycle from planning \rightarrow constructionv \rightarrow maintenance \rightarrow optimization


- Digital survey
- Tool-based design

 BIM application and digital construction



• BIM+DCIM, digital O&M

BIM+ simulation, digital optimization

Digitalization of devices and terminals and instant messaging technologies support digital foundations.

Autonomous Driving – Automatic Energy Efficiency Optimization: Enables Smart Cooling

Autonomous Driving – Keeps Personnel Away from Equipment Rooms, Maximizes Resource Value

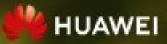
Manual inspection ↓ Al-based remote inspection

Digital and Standardized O&M

Resource Optimization

@AI

Energy Scheduling



2020 German Red Dot Design Award: Service Innovation, Easyto-Use Interface, and Best Experience

We Do Not Inherit The Earth From Our Ancestors,

We Borrow It From Our Children.

