

Outline

05 Proof-of-Concept

02 Objective

05 Standardization

03 Architecture

04 Innovations

Overall Concept

ADROIT6G proposes disruptive innovations in the architecture of emerging 6G mobile networks that will make fundamental changes to the way networks are designed, implemented, operated, and maintained.

Project Objectives

O1: Propose a novel 6G system architecture that integrates a distributed AI framework for combined communication, computation and control and empowers the convergence of networks and IT systems to enable new future digital services.

O2: Create an Al-driven Management & Orchestration and control framework for 6G Networks.

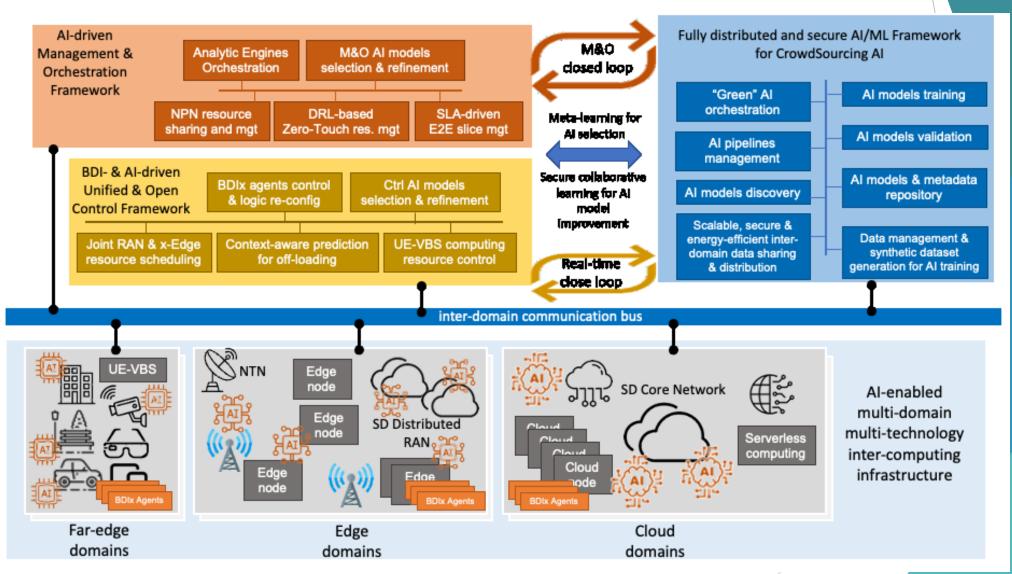
O3: Architect a distributed and secure CrowdSourcing

O4: Develop energy-aware models for multimodal Representation Learning

O5: Evolve the cellular infrastructure to allow the true integration of deep-edge devices in communication and computation functions

O6: Enable Non-Terrestrial Networks connectivity for highly reliable Industrial IoT Services

O7: Extend and demonstrate the use of decentralized AI for Device-to-Device communications


O8: Support data plane acceleration

O9: Integrate and demonstrate the potential and user value of ADROIT6G through relevant experimentation, testing, and validation of its innovations in PoCs in lab settings

General Architecture

Innovation Streams

TRANSFORMATIONS

Al/ML powered optimizations

CrowdSourcing Al

Distributed Agents

Regenerative Models

M.

Cloud Native Network Software

Virtual Base Stations

Edge-cloud for NTN

TECHNOLOGIES

Software-driven
Zero touch Automation

Automated M&O

Open Programmability

- networks, based on Belief-Desire-Intention (BDI) Agents
 - Crowdsourcing AI to minimize AI/ML carbon footprint and enable efficient AI/ML in distributed systems, via collaborative techniques
 - Sustainable data usage and generation, learning representations of data collected at the edge and the far edge of the network
 - Zero-Touch management enabling Al-driven dynamic slice reconfiguration for self-driven 6G infrastructures
- Network automation and self-optimization via closed-loop orchestration in multi-layer scenarios with cooperating stakeholders


Infocom World 2023

Proof-of-Concept

Immersive XR - Holographic Teaching

A teacher provides the lecture at home/office, while the students attending physically the class, can watch the teacher's holographic entity delivering the lesson

Collaborative robots (cobots) in construction

Robots and drones that need to coordinate actions with each other in a construction site. Coordination will be conducted in three dimensions, to avoid collision and enable collaboration of robots in the air (drones).

Proof-of-Concept

Terrestrial 6G IIoT

production line of an automotive In manufacturing process sensors and actuators (i.e., IIoT devices) communicate with each other, and taking actions in sub-millisecond time intervals, within a confined area, executing different robotic functionalities.

NTN for low-bitrate IIo

Trackside IIoT devices and on-train terminals, that send data to a remote cloud. Edge Cloud components on the devices, in satellites and in the remote data centre pre-process and route data and perform control depending on the application logic and in case of issues in the communication path.

Service class focus	All service classes	PoC 1	PoC 2	PoC 3
		Extreme eMBB	Extreme mMTC + NTN	Extreme URLLC + Extreme mMTC
Network-level KPIs	5G KPIs (baseline)	6G KPIs	6G KPIs	6G KPIs
Peak throughput (Gbps)	<20	>1000	Not critical	Not critical
Experienced upload throughput (Gbps)	<0.1	<1	Not critical	Not critical
Experienced download throughput (Gbps)	<0.2	<2	Not critical	Not critical
Maximum bandwidth (GHz)	<1	<100	Not critical	Not critical
Application latency (ms)	<10	<1	Not critical	<0.1
Jitter (µs)	N/A	<100	<100	<1
Energy efficiency (Tb/J)	N/A	nominal	high	nominal
Device density (devices/m²)	<1	Not critical	<10	<10
Reliability (packet error rate)	10 ⁻⁵	10 ⁻⁷	10 ⁻⁶	10 ⁻⁹
Positioning accuracy (cm)	<50 in 2D	Not critical	<100	<1 in 3D
Visualised user experience	50Mbps, 2D	10Gbps, 3D	Not critical	Not critical
QoE (MOS)	N/A	>4.3	>4.3	>4.3

14/12/2023 Infocom World 2023

Societal Indicators - KVIs

MOVation

Safety **Security** Regulation Responsibility **Energy Efficiency**

Privacy Fairness Digital Inclusion Trustworthiness

Sustainability Business Value Economic Growth Open collaboration New Value chain

14/12/2023

EADROIT 6€ Impact on Standards

12

Contributions to the ETSI ENI WG

Crowdourcing AI solution to minimize AI/ML carbon footprint and enable efficient AI/ML training and inference in distributed systems.

Contributions to the ETSI ZSM and ETSI MEC WG

Distributed closed loop automation in Al-driven Management & Orchestration frameworks for multi-stakeholder ecosystems.

Contributions of the UE-VBS Computing Continuum concept to 3GPP

- Contribute the proposed UE design to the TSG Core Networks and Terminals.
- Consider standardization of BDI Agents for Self-Organizing UE-VBS.

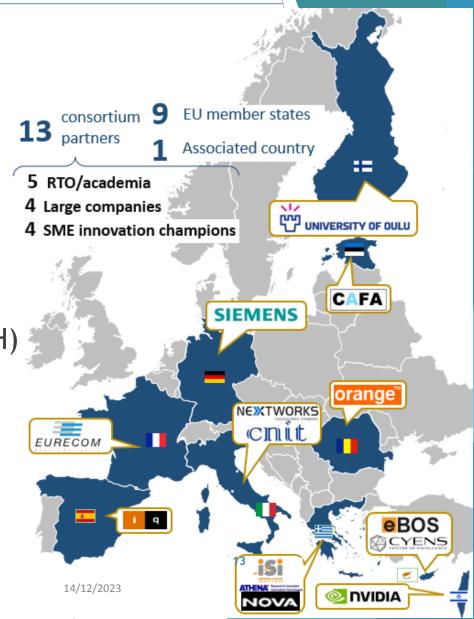
Contribution to the 3GPP SA2 group

Consider contribution of the NTN / 6G integration solution from Terrestrial 6G IIoT PoC.

Infocom World 2023

Project Overview

Project Name: ADROIT6G


> Stream: B0101

Project website: www.adroit6g.eu

Project Coordinator: Prof. Ch. Verikoukis (ISI/ATH)

- ► Technical Manager: Prof. V. Vasiliou (CYENS)
- Project Officer: Mr. P. Fournogerakis

Contact
Details

Prof. Christos Verikoukis

ISI/ATH

@c_veri

Christos Verikoukis

cveri@isi.gr

Infocom World 2023

14/12/2023