

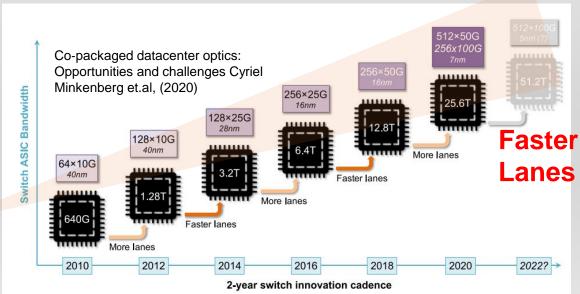
Photonic Accelerators for Edge Computing Applications: The PROMETHEUS Project Approach

Adonis Bogris

University of West Attica, Dept. of Informatics and Computer Engineering Research Unit on Neuromorphic Computing and Photonics

Need for 800G in the Edge-Cloud Approach

RAN Fronthaul


- ➢ 6G at 7 GHz spectrum
- 1024 units with 400 MHz carriers are envisioned
- >400 Gbps per RRU
- 800G-1.6T in the fronthaul for 2-4 RU cell sites

Edge Data Center Interconnects

- Traffic in the edge skyrockets
- Multiple Edge DCs utilized for steady/low latency
- Aggregated data traffic from Access moves between Edge DCs

Data Centers

- Transitions beyond 25.6G Switch cannot rely on increased port density
- Optics in the Rack should be contained to 64 pluggables
- Faster lanes is the only way to go

The industry will quickly transition from 800G to 1.6T

At the market in 2023

- 800G 2xFR4/LR4 at 53 Gbaud, 800G ZR/ZR+
- 800G and 1.6T PAM4 DSP with 112G Serdes (Marvell, Broadcom)
- 224G Serdes (Cadence)

224G-LR SerDes PHY

MARVELL

Enables 1.6T and 800G networks

드

Product Brief

Marvell Launches Industry's First 800G ZR/ZR+

· COLORZ® 800 is the industry's first family of 800 Gbps ZR/ZR+ coherent pluggable optical modules

Modules for Data Center Interconnects

for connecting data centers up to 1,200km apart.

Nova[™] 1.6T PAM4 DSP for Optical Transceiver Applications

Optics are ready to go!

Th4B.2

OFC 2023 © Optica Publishing Group 2023

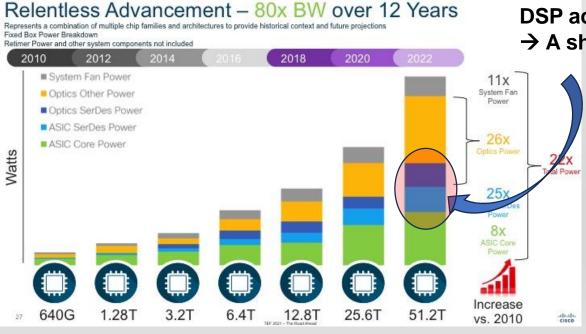
• >100 GHz EMLs, PDs

>60 GHz linear amplifiers

Optical Amplification-Free 310/256 Gbaud OOK, 197/145 Gbaud PAM4, and 160/116 Gbaud PAM6 EML/DML-based Data Center Links

Th4A.3

OFC 2023 © Optica Publishing Group 2023


280 Gbit/s PAM-4 Ge/Si Electro-absorption Modulator with 3-dB Bandwidth beyond 110 GHz

DSP is here to stay, but...

More DSP has been added even to the IM-DD portfolio:

- Faster than-Nyquist (FTN) precoding and equalization (THP, MLSE)
- Probabilistic constellation shaping (PCS)
- Multicarrier entropy loading (EL)
- Volterra nonlinear equalization (VNE)

DSP accounts for almost 60% of a 800G pluggable (~8W for 2xLR4) \rightarrow A shift to coherent-lite (10 km) will employ even more!

Analog counterparts

1. Analog Coherent i.e. self-homodyne (SHD) coherent optical transceiver

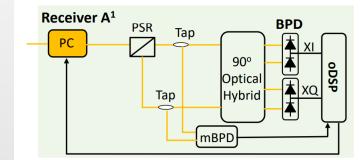
- Remove carrier and frequency correction by sending the LO along with the signal
- Ignore PMD and PDL and track Pol rotation with low-speed analog circuitry removing MIMO
- O-band operation eliminates CD compensation
- It is still ADC based with reduced DSP load
- ✤ It requires custom optics increasing costs

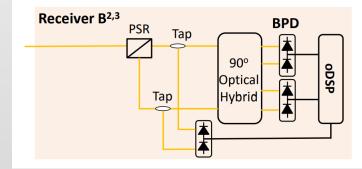
2. Analog FIR Blocks (FFE, CPE)

Immature with low speed capabilities (<25 Gbaud) and low tap numbers (<20)</p>

Detector

Light DSP

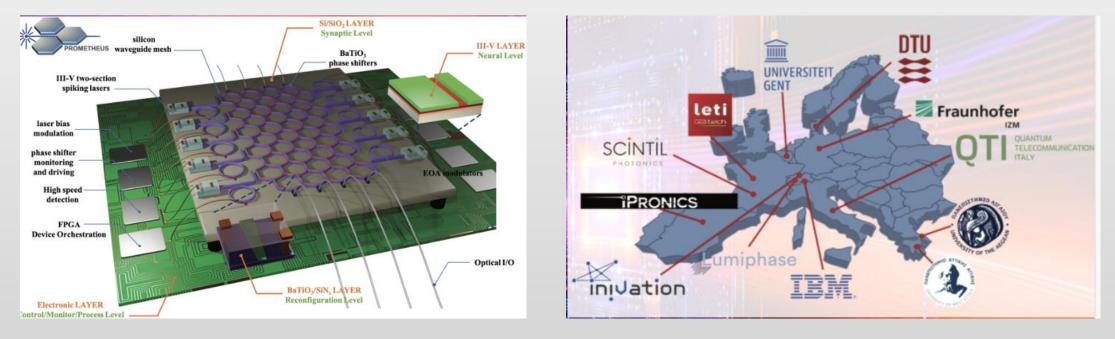

3. Photonic Accelerators


Transmitter

Equalization based in photonic unconventional pre-detection processing

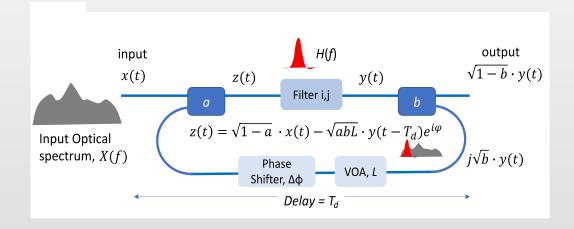
Photonic

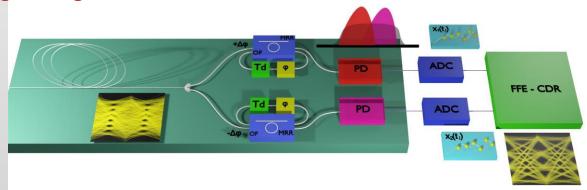
Accelerator



PROMETHEUS Horizon Europe

Presents a holistic approach in integrated programmable photonics as a proliferating platform for neuromorphic/quantum computing and applications in edge computing/industrial imaging/cybersecurity.


The project is funded by the European Commission with a contribution of almost 4 million euro under the CL4-2021-DIGITAL EMERIGNG-01-07 topic.

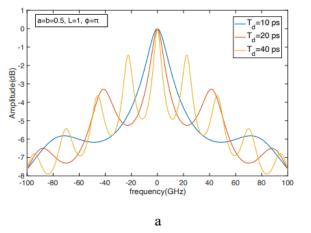


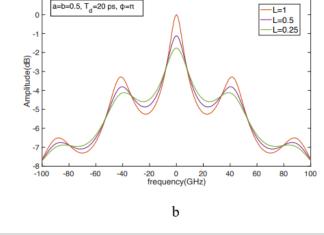
Photonic Accelerator based on Recurrent spectrum slicing

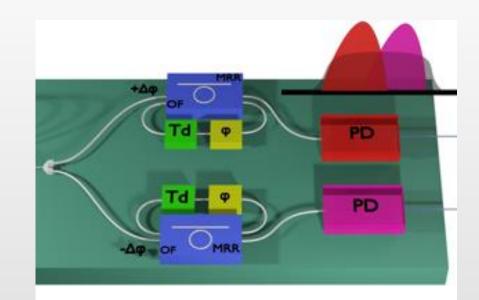
- Coherent processing in the spectral domain
- Almost zero consumption (phase shifters)
- Compatible to programmable photonic platforms
- Recursive operation adds memory to the receiver
- Optical frequency diversity
- Capable of 100 Gbaud and beyond with 50 GHz opto-electronic components thanks to slicing!

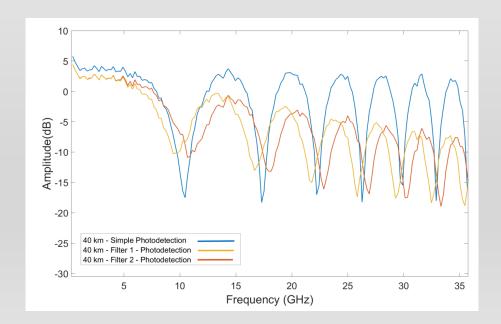
K. Sozos et al, Photonic Reservoir Computing based on Optical Filters in a Loop as a High Performance and Low-Power Consumption Equalizer for 100 Gbaud Direct Detection Systems, ECOC 2021
K. Sozos et al., High-Speed Photonic Neuromorphic Computing Using Recurrent Optical Spectrum Slicing Neural Networks, Nature Comm. Engineering,

Trade-off between complexity and efficiency

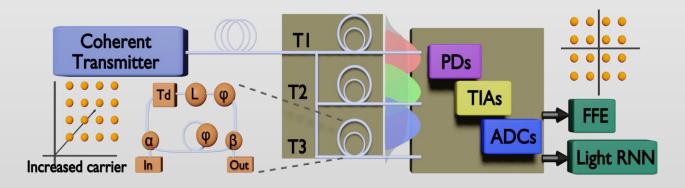





Basic Concept


Tunable recurrent filter transfer functions process the input signal in the frequency domain

- Power fading can be vastly reduced
- Phase information can be efficiently translated in the amplitude domain (self-coherent detection for M-QAM signals)


2666

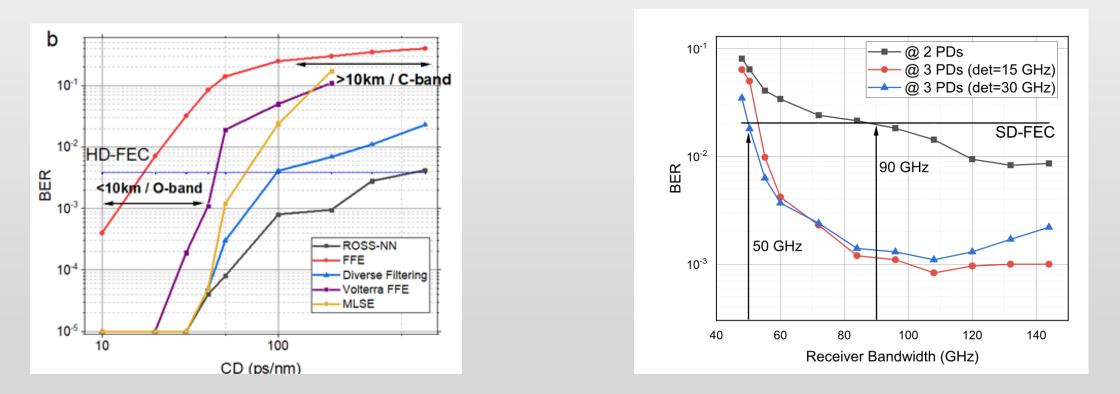
Photonic Accelerator based on Recurrent spectrum slicing : Self—Coherent approach

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 9, MAY 1, 2023

Self-Coherent Receiver Based on a Recurrent Optical Spectrum Slicing Neuromorphic Accelerator Kostas Sozos[®], Stavros Deligiannidis[®], Charis Mesaritakis[®], and Adonis Bogris[®], Senior Member, Optica

One regression unit (FFE) per quadrature

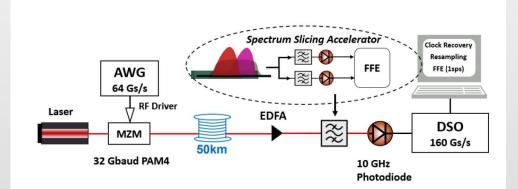
Critical Optimization Parameters for a given baud-rate and link

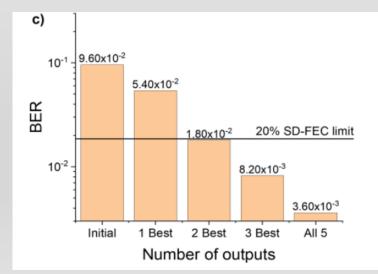

- 1. Carrier-to-signal noise ratio (CSPR)
- 2. Recurrent filter properties
- 3. Number of receivers and their bandwidth
- 4. Constellation Shape (Not examined yet)

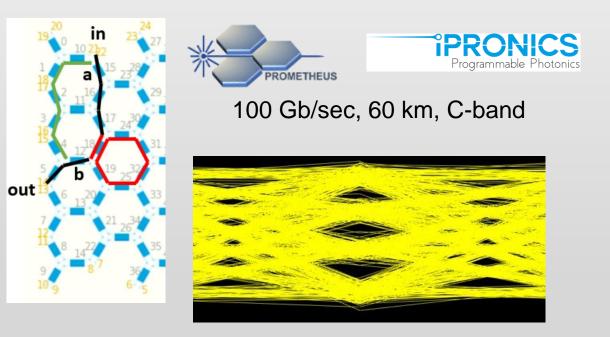
Photonic Accelerator based on Recurrent spectrum slicing: Numerical Results

PAM-4 100 Gbaud

QAM-16 240 Gbaud @ 10 km O-band




Capabilities: Up to 960 Gb/s transmission in a single wavelength – single polarization (16-QAM) with 60 GHz optoelectronic components


Photonic Accelerator based on Recurrent spectrum slicing: Experimental Validation

PAM-4 32 Gbaud using off-the-shelf optical filters

QAM-16 and IM-DD on programmable photonic platforms (real-life device emulation)

64 Gb/s using no DSP and 10 GHz photoreceivers

Techno-economic comparison @ 1.6 Tb/s

	IM/DD	Coherent	Coherent-lite SHD	ROSS IM/DD	ROSS Self-coherent
Symbol Rate/ Format	8x112 Gbaud PAM4	2x120 Gbaud DPQAM16	2x120 Gbaud DPQAM16	8x112 Gbaud PAM4	4x120 Gbaud QAM16
Transmitter	8 semi-cooled EMLs	2 Cooled ECLs	2 semi-cooled moderate power DFBs	8 semi-cooled EMLs	4 semi-cooled low power DFBs
Rx Analog BW	8x Class 60	8x Class 60	8x Class 60	16x Class 30	8x Class 50 or 12x Class 30
DSP	FFE+MLSE	RRC + CD + MIMO + COE + CPE	RRC+MIMO	FFE	FFE
Consumption	~ 20 W	> 30 W	~ 30 W	~ 20 W	~ 20 W
Cost	Α	> 5 x A	> 5 x A	~1.5 x A	~ A
Latency	Medium	High	Medium	Low	Low
ER capable	No	Yes	Yes	Yes	Yes

Acknowledgements

visit us on www.rncp.eu

S. Deligiannidis C. Mesaritakis

K. Sozos

G. Sarantoglou

M. Skontranis

A. Tsirigotis

D. Tartaris

D. Dermanis

G. Tsilikas

