

ALLEGRO: Next Generation Ultra-Low Energy and Highly Secure Optical Networks

Konstantinos Filis, Ph.D.

Senior R&D Engineer

COSMOTE - Mobile Telecommunications S.A.

R&D Department, Fixed & Mobile

Core Network DevOps & Technology Strategy Division, Fixed & Mobile

E-mail: kfilis@ote.gr

Infocom 2023, 14/12/2023, Divani Caravel Hotel, Athens

ALLEGRO - General Information

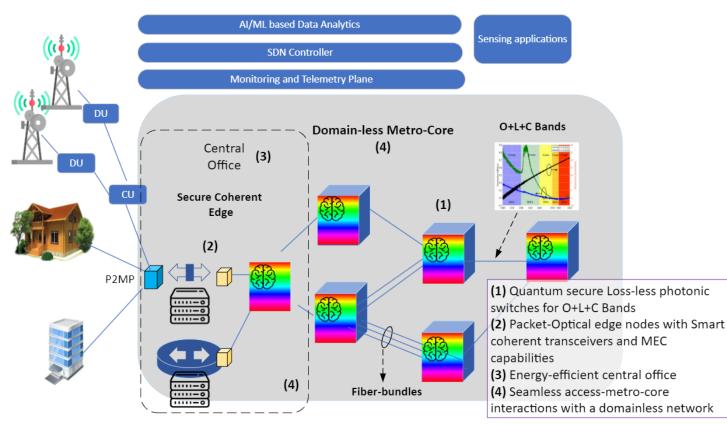
- Grant Agreement: 101092766 (HORIZON-CL4-2021-DIGITAL-EMERGING-01)
- Duration: 42 Months
- Starting Date: 01/01/2023
- Ending Date: 30/06/2026
- ➤ Total Budget: € 13,740,977.00
- > EU Contribution: €11,829,201.25
- Coordinator: Fraunhofer IZM, DE
- VRL: <u>www.allegro-he.eu</u>

ALLEGRO Consortium

1	соо	Fraunhofer	FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV	DE
		IZM	Fraunhofer Institute for Reliability and Microintegration (IZM)	
		нні	Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute (HHI)	
2	BEN	AUTH	ARISTOTELIO PANEPISTIMIO THESSALONIKIS	EL
3	BEN	INF-G	CORIANT R&D GMBH	DE
4	BEN	ICCS	INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS	EL
5	BEN	INF-P	INFINERA UNIPESSOAL LDA	РТ
6	BEN	IPR	IPRONICS PROGRAMMABLE PHOTONICS SL	ES
7	BEN	NVIDIA	MELLANOX TECHNOLOGIES LTD - MLNX	IL
8	BEN	COS	COSMOTE KINITES TILEPIKOINONIES MONOPROSOPI AE	EL
9	BEN	TUE	TECHNISCHE UNIVERSITEIT EINDHOVEN	NL
10	BEN	TEI	ERICSSON TELECOMUNICAZIONI SPA	IT
11	BEN	ТІМ	TELECOM ITALIA SPA	ІТ
12	BEN	CNIT	CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI	IT
13	BEN	сттс	CENTRE TECNOLOGIC DE TELECOMUNICACIONS DE CATALUNYA	ES
14	BEN	LINKS	FONDAZIONE LINKS - LEADING INNOVATION & KNOWLEDGE FOR SOCIETY	IT
15	BEN	TID	TELEFONICA INVESTIGACION Y DESARROLLO SA	ES
16	BEN	UPC	UNIVERSITAT POLITECNICA DE CATALUNYA	ES
17	BEN	POLITO	POLITECNICO DI TORINO	IT
18	BEN	EUL	EULAMBIA ADVANCED TECHNOLOGIES MONOPROSOPI ETAIRIA PERIORISMENIS EFTHINIS	EL
19	BEN	ELIG	E-LIGHTHOUSE NETWORK SOLUTIONS SL	ES
20	BEN	SIC	SECURE-IC SAS	FR
21	AP	ETHZ	EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH	СН
22	AP	IDQ	ID QUANTIQUE SA	СН
23	AP	UOB	UNIVERSITY OF BRISTOL	UK

ALLEGRO Concept

ALLEGRO targets designing, prototyping, and demonstrating a novel end-to-end (E2E) solution for next-generation optical networks.


ALLEGRO integrates packet-optical transport architecture satisfying four key pillars for next-generation telecommunication systems:

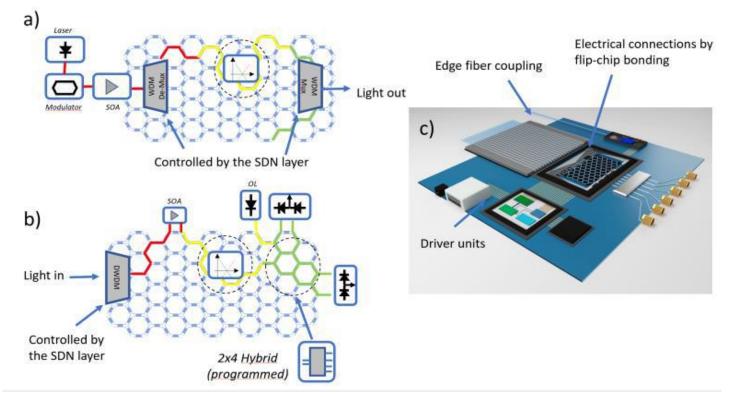
- Ultra-high-capacity from access to the core;
- Considerable reduction of power consumption and cost;
- Autonomous network control management exploiting artificial intelligence / machine learning (AI/ML) for ultra-high-capacity multi-domain optical systems; and
- Secure and reliable optical transmission.

Architecture and design of an AI/ML empowered ultrahigh capacity and energy efficient alloptical solution spanning from access to core with native ultrahigh security and reliability.

Domainless multi-band and multi-fiber end-to-end packet-optical network

ALLEGRO's domainless quantum-secure multi-band and multi-fibre end-to-end all-optical network.

ALLEGRO Objective 1 KPIs


- > Energy efficient (> 25% energy savings) all-optical network for beyond 5G and 6G;
- Fast (< 100 ms) deployment and reconfiguration of disaggregated network functions;</p>
- > > 2x reduction of OEO (Optical-Electrical-Optical) components in E2E network;
- Reduce operational costs (> 25%) by improved control plane and autonomous decision making;
- Provide E2E security able to support > 90% of services.

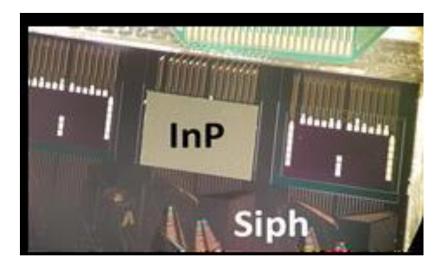
Design, fabricate, package, and test novel smart transceivers.

The devices will comprise programmable photonic integrated circuits (PICs) containing 64 input/output (I/O) ports, able to connect up to 64 transmitter and receiver subsystems, allowing a total data rate of 32 Tb/s and wavelength routing.

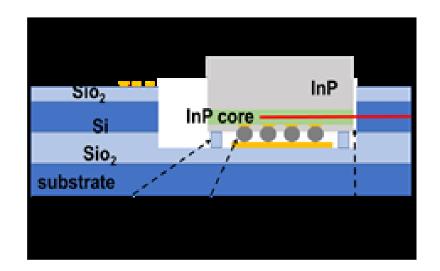
Schematic representation of the smart transceiver developed in ALLEGRO.

- a) Transmitter; concept of operation in the configurable mesh for a single laser and modulator.
- b) Receiver; concept of operation in the configurable mesh for one wavelength after the DWDM.
- c) Packaging of the device including optical and electrical interfaces.

& ALL≡ gro-


ALLEGRO Objective 2 KPIs

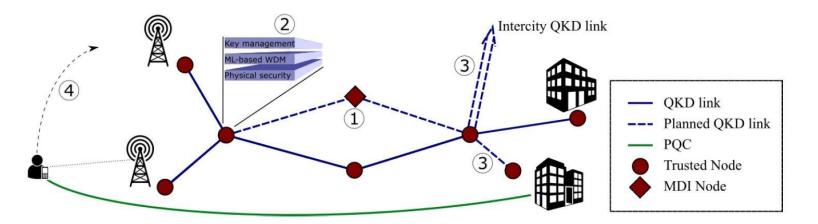
- > 1 Tb/s transmitter: dual-polarisation plasmonic IQ modulators with $V\pi = 1 V$, 125 GBd 16 quadrature amplitude modulation (QAM) per polarisation, and electrical amplifier-less operation;
- Tb/s receiver: dual-polarisation plasmonic balanced photodetectors with a responsivity of 0.5 A/W, 125 GBd 16QAM reception per polarisation using an optical hybrid;
- Photonic channel processing (filtering, dispersion compensation, balanced detection mismatch compensation: bandwidth granularity 1 GHz, channel separation 100 MHz, up to 64 independent frequency channels (subcarriers (SCs));
- > 2x4 Hybrid: Power division precision < 0.05 dB, phase shift precision < 0.1 rad.



Investigate and realize novel fast and lossless hybrid photonic switches with on-chip amplification operating in the O, C and L bands for datacom network architecture providing transparent switching operation to eliminate OEO conversions (and thus a lot of expensive transceivers and the associated cables).

Photograph of hybrid integrated 1x8 switch

Hybrid integration via flip-chip bonding


ALLEGRO Objective 3 KPIs

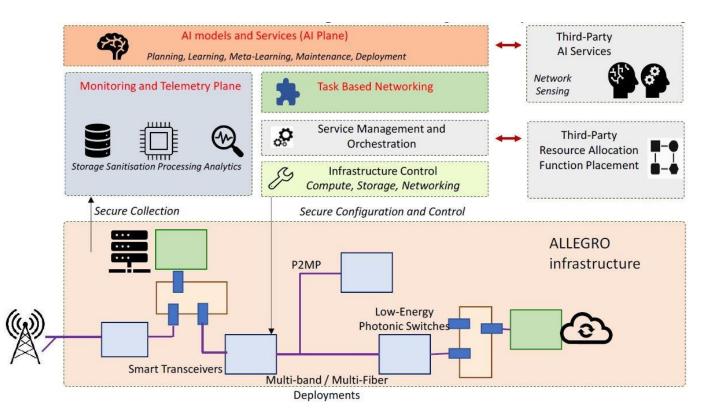
- Programmable multiband optical switches operating in the O, C and L bands with multifunctional capability (switching, broadcasting and multicasting);
- Low power consumption of < 8W for the 16×16 O-band optical switch and less than 0.5 W for the 32x32 C- and L-band optical switches;
- Switching time of < 20 ns for the O-band switch (Edge-DC) and sub-ms for the Cand L-band switches;
- Loss-less operation by co-integration of on-chip amplifiers.

Design and develop an advanced secure data plane network for the "quantum era".

The following methods are pursued by ALLEGRO to achieve Objective 4:

- (1) QKD (Quantum Key Distribution) protocols (e.g., MDI, QKD) for increased security and higher performance;
- (2) physical security present in every node by QKD, PUFs (Physically Unclonable Functions) for authentication, QDT (Quantum Detector Tomography) methods for security and performance improvements; ML-based multiplexing for optimized integration of QKD in real-world OTNs (Optical Transport Networks); local KM to build up a scalable QKD network;
- (3) flexible hybrid solutions that dynamically build in new QKD links (locally and globally) in the security architecture and that
- (4) automatically adapt the key relaying when a mobile users move.

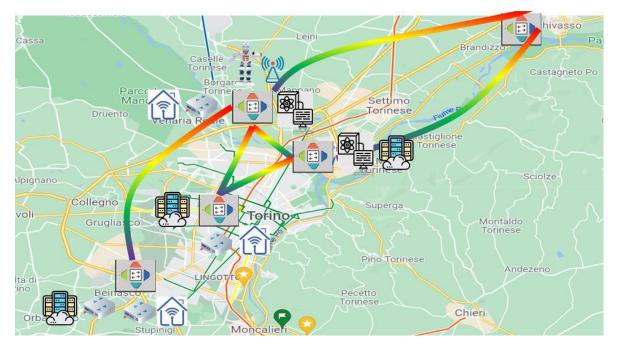
ALLEGRO Objective 4 KPIs

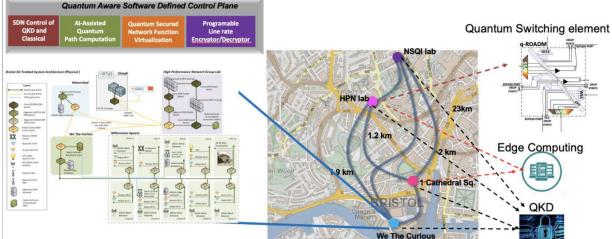


- > Multiplexing of QKD link next to classical channels with a total power of at least 1 dBm;
- Demonstration of E2E hybrid solution based on elaborated security use cases;
- Development of PUF devices with interchangeable random physical tokens, capable to support at least 50.000 challenge response pairs per token and key length of at least 2048 bit;
- Reduction of > 50% in quantum bit error rate (QBER) and increase of > x2 in secret key exchange rate under stable state of polarization (SOP) conditions, and accuracy of > 90% for eavesdropping detection by using QDT;
- Protocol-agnostic system with user dynamically changing between at least two QKD protocols.

Design and development of a secure and reliable control, monitoring and orchestration system for low energy and low latency multi-band optical networks and services with AI/ML assisted network operation.

Overall architecture of the control, orchestration, and monitoring system of ALLEGRO


ALLEGRO Objective 5 KPIs


- E2E network provisioning in a sub-second level considering control plane latency of only ~ 100 ms;
- Device local control loop, including data collection, analysis and decision making in < 10 ms;</p>
- Polynomial complexity algorithms, improve baseline and state-of-the-art algorithms for resource allocation and dynamic function placement targeting low power consumption, low latency and jitter (~10 µs) operation;
- Autonomous operation to reduce OPEX > 25% as compared to manual operation due to statistical multiplexing of the highly dynamic traffic and required service assurance;
- High resolution vibration and stress sensing using metro / radio access network (RAN) infrastructure with high locomotion resolution (< 1m) and wide sensing range (>10 km) for intrusion detection and prevention.

Realization of E2E demonstrators

Torino cluster: geographical pictorial layout

UoB testbed for showcasing quantum secure 5G utilising a dynamic optical network and installed fibre in the city

ALLEGRO Objective 6 KPIs

- Demonstrate an integrated prototype of the ALLEGRO architecture that satisfies the security, latency, operational and energy efficiency KPIs identified in the other objectives;
- Achieve up to 50% reduction of the power consumption by optimizing CAPEX investments at the boundary between the metro and access network thank to smart multi-band P2MP transceivers and switches and by efficiently operating the network thanks to AI/ML techniques;
- > Multi-service E2E validation of a multi-protocol agnostic security layer.

Reinforce EU leadership and influence industry to adopt ALLEGRO principles through standardization, communication and dissemination activities.

COSMOTE's role in ALLEGRO

- COSMOTE leads the task of defining the architecture of the project's proposed technology and contributes to the use cases definition.
- COSMOTE will also participate in the assessment of the new technology, as well as to the dissemination and exploitation of the project's innovations.
- COSMOTE's IoT platform will be available to be used in the project demos, especially in the Torino cluster.

Thank you!

COSMOTE - Mobile Telecommunications S.A.

R&D Department, Fixed & Mobile Core Network DevOps & Technology Strategy Division, Fixed & Mobile Pelika & Spartis 1, Maroussi, 151 22, Greece

